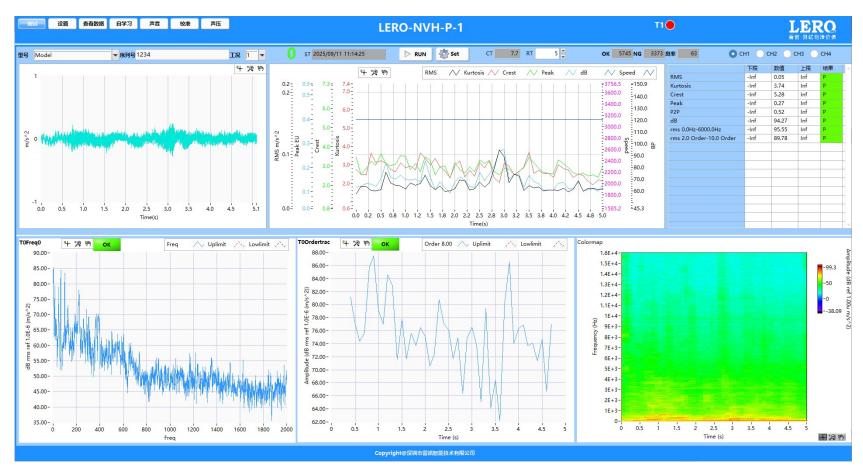
IBC Motor NVH Testing Bench

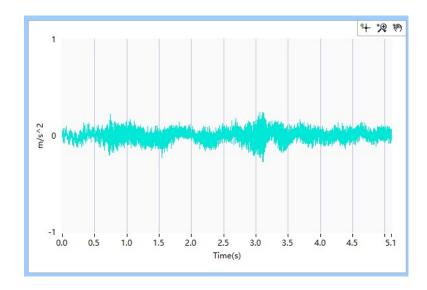
雷诺. NVH测试 功能说明

深圳市雷诺智能技术有限公司 中国·深圳


Hydraulic Test Experts 测试创造价值

TEST

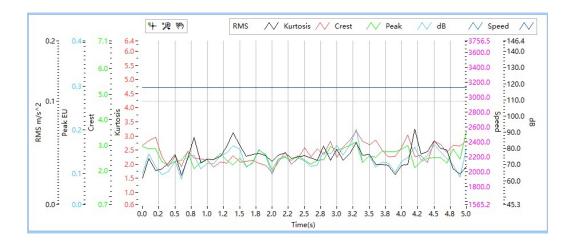
IBC Motor NVH Testing Bench


主界面

TEST

IBC Motor NVH Testing Bench

时域波形显示


时域波形显示,通过设置不同单位、灵敏度等信息,采集时同步将原始波形显示到主界面上。

General	Advance			
通道号	信号名	单位	灵敏度 加权	对数参考
1	Vib1	m/s^2	50.85 Linear	1E-6
2	vib2	Pa	44.7 Linear	2E-5
3	Vib3	m/s^2	50.85 Linear	1E-6
4	Vib4	m/s^2	10 Linear	2E-5
5	Vib5	m/s^2	10 Linear	2E-5
6	Vib6	m/s^2	10 Linear	2E-5
7	Vib7	m/s^2	10 Linear	2E-5
8	Vib8	m/s^2	102 Linear	2E-5

TEST

IBC Motor NVH Testing Bench

时域指标分析

实时计算RMS、Kurtosis、Crest、Peak等指标,并同步刷新显示,也可在整体计算完成后将速度变化曲线显示到主界面上(0.1秒间隔)。

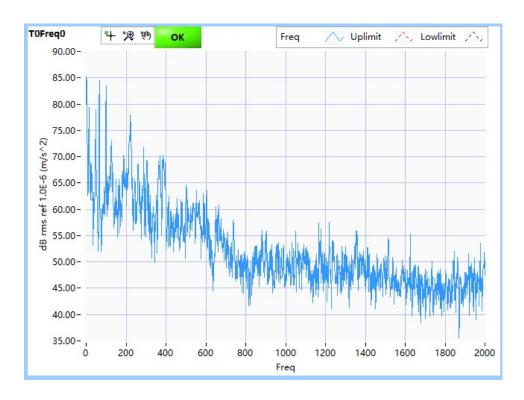
TEST

IBC Motor NVH Testing Bench

	下限	数值	上限	结果	
RMS	-Inf	0.05	Inf	Р	
Kurtosis	-Inf	3.74	Inf	P	Г
Crest	-Inf	5.28	Inf	P	ī
Peak	-Inf	0.27	Inf	Р	Т
P2P	-Inf	0.52	Inf	P	ī
dB	-Inf	94.27	Inf	P	Т
rms 0.0Hz-6000.0Hz	-Inf	95.55	Inf	Р	
rms 2.0 Order-10.0 Order	-Inf	89.78	Inf	P	T
					T
		1		1	T
					T
		1		1	T
					T
					T
					T

单值指标显示

分析通道的不同时域指标,将结果进行计算显示,同时可以显示不同频段、阶次段等能量值 (有效值、最值等)


前入dB ↑算	輸出	B f	参考值 2E-5	系数	~
下限	0 =	上限	5000	计算方法	^
下限	0	上限	0000	计算方法	
下限	0	上限	0	频谱rms 计算方法	
	0 -		0	频谱rms	

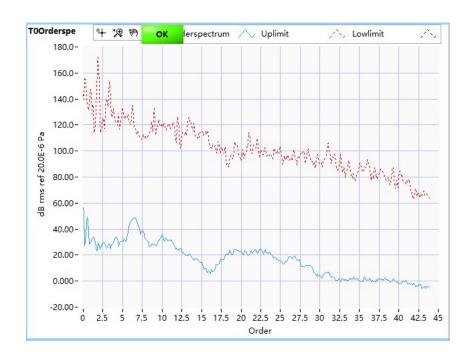
TEST

频谱

IBC Motor NVH Testing Bench

FFT (快速傅里叶变换) 频谱是通过将时域信号转换为 频域表示,揭示信号中各频率成分的幅值和相位。它利用快速算法高效计算离散傅里叶变换,从而在频域中展示信号的 频率组成。

可以根据需求修改频段范围、频率分辨率、窗长、平均模式等。

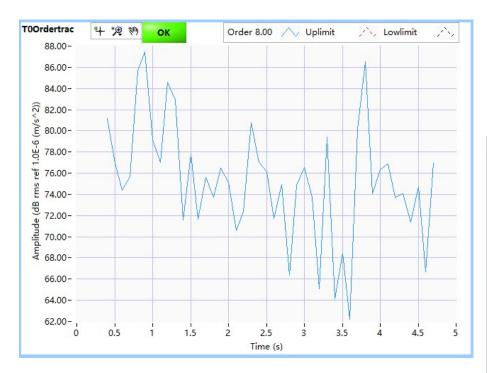

不同故障对应的表现频率不同,可以通过频谱识别不同故障。

frequency range	频率分辨率 dB On (T)
start frequency stop freq	uency 1
averaging mode	window
RMS averaging	Hanning
weighting mode	linear mode
Linear	One shot
number of averages	

TEST

IBC Motor NVH Testing Bench

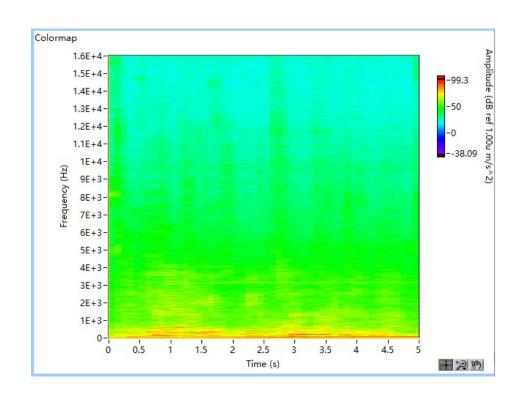
阶次谱


阶次谱,根据设置的最大阶次、阶次分辨率、平均模式、 窗类型等参数进行计算不同阶次的能量幅值,得到整体阶次 谱线,进行整体阶次包络线的限制管控。

max o	rder to analyze
32	
order	resolution
	0.1
ave	raging mode
-	RMS averaging
win	dow type
*	Hanning
dB on	

TEST

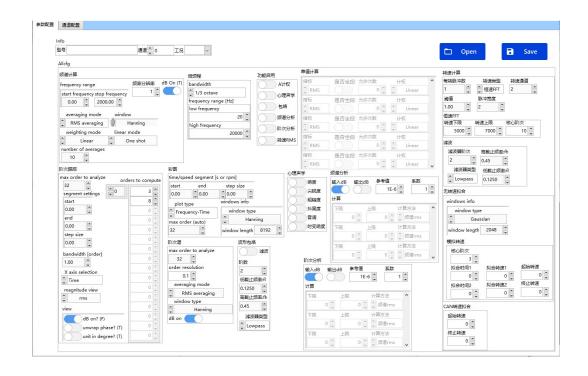
IBC Motor NVH Testing Bench


阶次跟踪

阶次跟踪可以根据需求修改起始点、结束点、分析步长、 阶次宽度等对指定阶次进行跟踪分析。

32	s to com
segment settings 0	3
start	8
0.00	0
end	0
0.00	0
step size	
0.00	0
andwidth [order]	0
1.00	0
_	0
(axis selection	0
Time	0
nagnitude view	
rms	0
ew	0
dB on? (F)	0
unwrap phase? (T)	0
unit in degree? (T)	0

IBC Motor NVH Testing Bench



根据需求修改起始点、结束点、分析步长、窗长、类型等计算得到时频、时阶、速频、速阶等彩图。

time/spe	ed segment [s or rpm]
start end		step size
0.00	0.00	0.00
plot ty	pe	windows info
Frequency-Time max order (auto)		window type
		Hanning
32	_	window length 8192

IBC Motor NVH Testing Bench

分析参数设置

按测试需求,可对不同型号、通道、工况等设置不同分析参数进行采集分析。

整体包含时域指标分析、倍频程分析、阶次跟踪、频谱分析、阶次谱分析、指定频段能量分析、心理声学等。

适应不同转速信号接入,支持无转速信号 的恒速、升降速转速分析,可以更好的适配产 线环境。

TEST

IBC Motor NVH Testing Bench

实时播音功能

在采集时,可同步播放指定通道的信号,也可在空闲时,加载原始波形数据进行声音回放。

TEST

IBC Motor NVH Testing Bench

自学习设置

更好地适应产线下线生产,可针对不同 指标(单值、曲线)进行自学习参数的设置, 后续根据生产情况不断迭代界限值。

根据需求可以设置不同自学习参数,可 只学习特定界限值,针对曲线可以进行跟踪 学习,也可对均值,最值进行学习。

主要问题解答

IBC Motor NVH Testing Bench

1、采样时间:可以程控,稳态分析需要4秒及以上

2、采样频率:程控可选,主要推荐32kHz,64kHz

3、振动加速度 (RMS) 算法: 时域曲线 (每0.1秒波形计算时域RMS) 、单值 (全程波形计算时域的RMS)

软件同时可以针对不同频段计算能量总值, 计算公式为

$$Rms = \sqrt{\frac{A_0^2}{2} + \sum_{i=1}^{k-1} A_i^2 + \frac{A_k^2}{2}}$$

A0起始频点、Ak终止频点、Ai中间频点,对于全频段分析,时域RMS单值与频域RMS单值差别极小

4、噪声(A计权dB)算法:对全程波形进行A计权,后计算全程的时域RMS通过公式转为dB值(噪声参考值为 0.00002Pa) $L_p = 20 \log_{10}(\frac{RMS}{P_{ref}})$

